

CMC EQAS TRANSFUSION MEDICINE MODULE

WEBINAR ON ANTI-HUMAN GLOBULIN TESTING 9th April 2025

ANTIGLOBULIN TEST

Dr GAYATHIRI K C

Associate Physician

Department of Transfusion Medicine and Immunohaematology

Christian Medical College

TEACHING OBJECTIVES

To state the principle of Antiglobulin test

To **recall** the steps in performing Antiglobulin test (DAT & IAT)

To **perform root cause analysis** when the test result is unacceptable

(4) PRINCIPLE

Detection of antibodies in the sample Coated on red cells Present in the plasma/serum

IGM ANTIBODIES (COMPLETE)

- Agglutinate in saline phase
- Pentavalent
- Usually naturally occurring
- Do not cross placenta
- React at temperature varying from 4 - 20°C
- Example: ABO antibodies

IGG ANTIBODIES (INCOMPLETE)

- Agglutinate in Coomb's phase
- Monovalent
- Usually immune in nature
- Can cross placenta
- React at 37°C
- Example: Rh antibodies

Immunoglobulin G (IgG)

- Structure, Subclasses and Functions

Antigen-Antibody Reaction

 Eventually complement activaton

lgM

lgG

COMPLETE VS INCOMPLETE ANTIBODY

Complete antibody - IgM

Incomplete antibody -IgG

PRINCIPLE - ANTIHUMAN GLOBULIN TEST

Detects incomplete antibodies

- Principle of AGT
 - Antibodies and complement components are globulins.
 - AHG forms bridges between antibody-coated red cells.

ANTIHUMAN GLOBULIN (AHG)

Antihuman:

- Antibodies against human antigens
- Globulin:
 - All antibody molecules are globulins
- Antihuman Globulin is an antibody directed against the Fc

portion of human antibodies and/or complement components

TYPES

- Monospecific IgG or C3d
- Polyspecific IgG and C3d (Blend)
- Importance of using Polyspecific blend
- Preparation
 - Monoclonal (hybridoma)
 - Polyclonal (small animal)

SELECTION OF AHG REAGENT

RECOMMENDED Titre – 64

- Using 1+ Sensitized O R₁r Positive Cells
- Serial dilutions
- Last tube that gives 1+ reaction is the selected titre

Specificity

- No reaction with unsensitized cells
- Ensure no prozone phenomenon
- Reliable supplier/Cold chain/Cost

(19) SAMPLE FOR AHG TESTING

SAMPLE FOR TESTING

- Correctly identified
- EDTA or Serum sample
- Fresh sample as recent as possible
- Should be less than 24 hrs
 - (Old serum sample can result in complement being reduced)

NETHODS

- Tube method
- Column agglutination method

Cannot be done on slides

DIRECT ANTIGLOBULIN TEST

Detects the in vivo sensitization of red cells

Antibodies coated on the RBCs

(18) PROCEDURE - DAT

Having a standardized operation procedure (SOP) is mandatory It should be up-to-date It should reflect your laboratory process All equipment should be calibrated

MATERIALS REQUIRED

- AHG reagent-Polyspecific (anti-IgG & C3d)
- Sensitized red cells / Check cells O Positive cells sensitized with Anti D
- Negative control unsensitized O Rh positive cells
- Normal saline (0.9%)
- ^m 75 x 12mm glass tubes
- Pasture pipette

PROCEDURE

Follow your laboratory SOP

Negative result

CONTROLS

Positive Control – Diluted Anti D

Negative Control – Fresh AB serum or 0.9% Saline

APPLICATIONS OF DAT

Review patient history and do relevant additional testing

Diagnosis of Hemolytic disease of fetus and newborn

Diagnosis of autoimmune hemolytic anemia

Medical diagnosis Historical blood group Transfusion history Transplantation history Current medications Diagnosis of drug induced immune hemolytic anemia

Investigation of hemolytic transfusion reaction

INDIRECT ANTIGLOBULIN TEST

25) PROCEDURE - IAT

Having a standardized operation procedure (SOP) is mandatory It should be up-to-date It should reflect your laboratory process All equipment should be calibrated

MATERIALS REQUIRED

 $75 \ge 12$ mm glass tubes and Test tube racks

Pasteur pipettes

Normal Saline (0.9 %)

LISS (optional)

AHG reagent - Polyspecific (anti-IgG & C3d)

Pooled 'O' cells (minimum 2 'O' cells, preferably 3 'O' cells)

Sensitized red cells / Check cells

Tabletop centrifuge

Serologic Incubator

REAGENT RED CELLS

- •For Donor testing Pooled O Rh Positive cells
- Patient testing use unpooled O cells
- Preferably phenotyped (R1R1 or R2R2 cells)
 NOT random O Pos samples pooled
- Commercial
- Inhouse

AABB. (2023). Technical Manual (21st ed.). AABB, Bethesda, MD

PROCEDURE

Follow your laboratory SOP

Negative result

CONTROLS

Positive Control – Diluted Anti D

Negative Control – Fresh AB serum or 0.9% Saline

APPLICATIONS OF IAT

Review patient history and do relevant additional testing Detection and identification of unexpected antibodies in the serum

Cross matching

Typing of minor red cell antigens

Medical diagnosis Historical blood group Transfusion history Transplantation history Current medications

Detection of weak D (earlier Du test)

Titration of antibodies

Anti-D in maternal serum in HDN

ROOT CAUSE ANALYSIS APPROACH

Root Cause Analysis (RCA) is a comprehensive term encompassing a collection of problem-solving methods used to identify the real cause of a non-conformance or quality problem.

ROOT CAUSE ANALYSIS

Identify the Problem

Gather Data and Investigate Possible Causes

Determine Root Cause

Implement Corrective and Preventive Actions

Documentation & Reporting

Identify the Problem

GATHER DATA AND INVESTIGATE POSSIBLE CAUSES

Issue Observed	Possible Causes	Investigative Approach
False negative DAT/IAT in suspected hemolysis case	 Insufficient sensitization of RBCs Improper washing of RBCs Neutralization of AHG reagent Low-affinity antibodies Improper centrifugation Variability in reagent sensitivity 	 Following SOP Ensure proper washing (≥3 washes) Use check cells to validate negative reaction Repeat test with different AHG reagent
		 Use Polyspecific and monospecific reagents separately Incubate at 4°C if low-affinity antibodies are suspected

GATHER DATA AND INVESTIGATE POSSIBLE CAUSES

Issue Observed	Possible Causes	Investigative Approach
False positive	 Inadequate washing (residual plasma 	 Repeat with properly washed RBCs
DAT/IAT	proteins)	 Ensure proper centrifugation settings
	 Over-centrifugation 	 Use fresh, anticoagulated sample
	 Clotted or old sample 	
	 Contaminated glassware 	
Hemolysis in test	 Strong complement activation 	 Check for hemolysis in patient
tube	 Autoimmune hemolysis 	sample before testing
	 In vitro hemolysis due to sample 	 Use fresh sample if hemolysis is
	handling	present

IMPLEMENT CORRECTIVE AND PREVENTIVE ACTIONS

Root Cause	Corrective Action	Preventive Action
Inadequate washing of RBCs	Repeat test with properly washed RBCs	Ensure proper training on washing steps
Improper centrifugation	Adjust centrifuge settings and retest	Calibrate centrifuge regularly
Contaminated or expired reagents	Use fresh reagents and document disposal	Implement reagent inventory tracking
Weak antibody reactions	Use polyspecific and monospecific reagents separately	Consider alternative testing if needed
Sample-related issues (e.g., clotted sample)	Request a fresh anticoagulated sample	Reinforce proper sample collection protocols

Log discrepancies in the Blood Centre Incident Report.

<u>Report</u> unresolved issues to the Quality Assurance (QA) team.

Monitor trends in errors for process improvement.

CHECKLIST

- Verify sample integrity
- Confirm reagent quality & storage conditions
- Check for proper control use
- Validate antiglobulin reagent (AHG) activity
- Ensure proper saline & enhancement media use

Pre-Analytical Checks: Sample & Reagent Verification Procedural Verification: Ensuring Proper Technique

- Check sample-to-reagent ratio
- Verify incubation conditions
- Check washing technique
- Verify reagent addition
- Review centrifugation parameters
- Assess reading technique

- Standardized Protocols & Training
- Quality Control & Proficiency
 Testing
- Documentation & Review
 Process
- Equipment Maintenance & Calibration
- Correlate with Clinical Findings

Preventive Measures for Ensuring Accuracy & Reliability

Investigating Results

- Document the result
- False positive
- False Negative
- Hemolysis

SUMMARY

To state the principle of Antiglobulin test

To **recall** the steps in performing Antiglobulin test (DAT & IAT)

To perform **root cause analysis** when the test result is unacceptable

- Even 10 mL of AHG can be neutralized by a tiny amount of free serum protein.
- A couple of drops of residual saline can dilute the AHG reagent below detectable levels.
- A technologist can forget to add AHG to a test tube.
- Normally people do NOT produce unexpected antibodies.
- Therefore, in the blood centre the test should usually be negative.
- Read Manufacturer's instructions carefully
- Follow Standard Operation Procedure

(43) THANK YOU

For information email us at : teqas@cmcvellore.ac.in Our website: https://cmceqas.org/